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Static Vacuum Solution of Direct Poincaré Gauge
Theory in Ten Dimensions with Four External
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A torsion-free solution of the free gauge field equations of direct Poincaré gauge
theory on a ten-dimensional Minkowski space is constructed. This solution
exhibits nontrivial curvature two-forms, but shaves the metric structure down to
that of a four-dimensional Minkowski space. Universality of this solution with
respect to the choice of the free ficld Lagrangian is established.

Current research into the foundations of elementary physical processes
has led to a sizable investment in theories where the dimension of the
underlying space is greater than four (supersymmetric theories in ten
dimensions, string theory in 26 dimensions, etc.). Ultimate validation of
such theories clearly requires a mechanism or procedure for reconciling
these higher dimensional constructs with the unavoidable fact that the space
of common experience is four-dimensional. It would therefore seem useful
to demonstrate a specific higher dimensional theory (ten-dimensional
‘Poincaré gauge theory) for which exact solutions of the vacuum field
equations lead to a metric structure of a four-dimensional Minkowski space.
Vacuum solutions with this property can then be viewed as an underlying
state upon which matter fields may be erected that will retain a full ten-
dimensional internal structure, but whose external asymptotic metric struc-
ture will remain four-dimensional.

1. DIRECT POINCARE GAUGE THEORY
IN TEN DIMENSIONS

We start with a ten-dimensional Minkowski space M,, with a global
coordinate cover {x'|0=i=9}, for which the line element assumes the
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standard form
9
ds’ = hydx'dx’ = (dx°)* = ¥ (dx?)* (1)
a=1

The Poincaré group for M, is the 55-parameter Lie group SO(1, 9)> T(10),
which we will denote by Pss. When this group is allowed to act locally, we
obtain the 45 compensating 1-forms

W = Wi{(x™) dx’, I=sa=45 (2)
for the SO(1,9) sector, and the ten compensating 1-forms
¢'=¢j(x") dx’,  0=i=9 (3)

for the translation sector T(10). Altogether, this gives a total of 550 Yang-
Mills potential functions { Wy, ¢;|0=1,j =9, 1 = & < 45) for the local action
of Pss on M.

The process for gauging Pss follows the identical pattern for gauging
P,, that was described by Edelen (1985a-d); simply allow all Latin indices
to range over 0-9 and all greek indices to range over 1-45. In particular,
we obtain the ten distortion 1-forms

Bi=dx'+ Wl ix'+¢', 0=i=9 (4)

where the I’s constitute a basis for the matrix Lie algebra of SO(1,9). The
B’s serve to define the fundamental coframe fields and the line element on
the resulting Riemann-Cartan space U, by

dS’=B'h;B’ =g, dx' dx’ (5)
The ten Cartan torsion 2-forms of U,, have the evaluation
3'=DB'=dB'+ W, AB/, 0=i=<9 (6)
While the 45 curvature 2-forms for the SO(1, 9) sector are given by
8% =dW+5C,* WP A W7, 1=a=<45 @

Here, C,, are the structure constants for so(1,9), and the corresponding
components of the Cartan-Killing form on so(1,9) are given by

CaB = Capvcﬁyp (8)

Since SO(1, 9) is semisimple, the Cartan-Killing form on so(1, 9) is nonsin-
gular.

In the interests of simplicity, we confine the discussion to the free
gauge field problem for Ps;. There will therefore be no matter field
Lagrangian, and the same argument as that used in Edelen (1985a,d)
indicates that we should also preclude the free Pss gauge field Lagrangian
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from depending on the components of the Cartan torsion 2-forms. We are
therefore left with a free field Lagrangian that can only depend on the
curvature 2-forms of the SO(1,9) sector.

The free field Lagrangian must be invariant under the local action of
Pss. Now, the simplest scalar invariant that can be formed from the curvature
2-forms is

=—105C, .00, h* W™ (9)
Accordingly, a fairly standard free field Lagrangian is given by
L=KUB (10)
where K is a coupling constant and )
B =det(B}) (11)
Let us set
aL oL 4B
Si=—s=—r=KU— (12)
dd, 0By 4B
s oU
Hy=—+ (13)
3075
so that
aL y
—=KBH] (14)
80

A direct analogy with the analysis given in Edelen (1985a) shows that the
field equations for the free gauge fields for Pss are

8B
Sk= KU—=0 15
dB: (15)

for the translation-compensating fields, and
3,(BHL)~ WP Cy",BH =0 (16)

for the compensating fields for the SO(1,9) sector. An obvious rewriting
of (16) gives us

B{o,H! - WPCy" , Hi}+ H3.B=0 (17)
2. DECOMPOSITION OF M,, AND THE FIELD EQUATIONS
BY SUBGROUP SPLITTING OF P,

The group Pss admits the subgroup inclusions

SO(1,9)> T(10) 2 SO(1,9) > S0O(9) = SO(3) x SO(3) x SO(3) (18)
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The latter group SO(3) x SO(3) x SO(3) engenders a natural decomposition
of M, in terms of isotropic three-dimensional spaces that are the domains
of action of each of the SO(3) factors. It is therefore useful to introduce
new coordinate labels by

{(x'|0=i=9}={x°, x{=x"* """ 1= q,k=3} (19)

Thus, {x%|1=<a=3} are Cartesian coordinates on the kth isotropic three-
dimensional Euclidean space on which the kth copy of SO(3) acts.

It is natural to look for solutions of the field equations that are consistent
with this decomposition of M,,. Since only SO(3) x SO(3) x SO(3) is invol-
ved, a necessary requirement is that all of the compensating fields for the
translation sector vanish:

¢j(x")=0,  0=ij=9 (20)

Let us order the generators of so(1,9) so that the first nine generate
50(3) x 50(3) x s0(3). We must then require that

W =0, 10<a=45 (21)

In view of the direct product structure that we are now dealing with, it is
convenient to introduce an alternative designation for the first nine W’s,

{(Wo1=a=9}={Wk]=W*"*1=<4 k=3} (22)

Thus, W#[1] are the compensating 1-forms for the local action of SO(3)
on the first three-dimensional space with coordinates x{, W*[2] are com-
pensating 1-forms for the local action of SO(3) on the second three-
dimensional space with coordinates x5, etc.

This notation allows us to rewrite the distortion 1-forms as

{B|0=i=9}={B° B[k]|1=<a, k=3} (23)
where
B[k]=dxi+ W*k]ea x2 (24)

and we have made use of the representation for the generating matrices of
50(3) in terms of the standard three-component permutation symbols. The
line element on U,, thus becomes

dS?=(dx%— ¥ B[k]8,,B"[k] 25)
k=1

In like manner, let us set

{0°11=a=9}={0"k]=0>*""""1=A k=3} (26)
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Since we are dealing with so(3) X 50(3) X 50(3), and all of the W* vanish
for a>9, the expressions for the surviving curvture 2-forms simplify
significantly,

0 k]=dW[kl+ie”sc WP[k1a WEk] 27)
We then have

3
4U =Y 05[k)8ap05,[K]A"H" (28)
k=1

and hence the nonzero field intensities are

aU
3051k]

Hi[k]= (29)
When these evaluations are substituted into the field equations given in the
previous section, there is also a drastic simplification. The only field
equations not identically satisfied are

0B
UaB; , 0=, (30)
and
B{o;HA[k]~ W7[klesgs“HE}+ HY[k]o:.B=0 (31)

0=j=9; 1= A, k=3), where we have used the standard representation for
the structure constants of so(3) in terms of the three-component permutation
symbols. We therefore have a total of 190 field equations for the determina-
tion of the 90 field variables W;'[k](x™), and the problem is highly over-
determined at this level, where the nonzero W’s are allowed to depend on
all ten independent variables. We note, however, that all of these equations
can be satisfied if the ten by ten matrix with entries ((B])) has rank less
than 9 (i.e., B=0, 9B/3B,=0).

3. TORSION-FREE SOLUTIONS OF THE FIELD EQUATIONS

We first note that SO(3) and SU(2) have the same Lie algebras, and
hence solutions to the free field equations for local action of SU(2) should
prove to be useful in constructing solutions to the field equations just given.
Infact, if the indices { and j are appropriately restricted in (31), the quantities
within the curly brackets are exactly the field equations for free SU(2)
compensating fields. Now, there are many known SU(2) solutions that
could be used in various ways. The one we wish to concentrate on is the
static “magnetic monopole” solution of Yang and Wu (1969). The restriction
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to the appropriate three-dimensional “factor” spaces of M,, that comes
from the so(3) x s0(3) X s0(3) subgroup of Pss can be achieved by setting

WALK] = dxi e pxiry’ (32)

that is, each W*[k] is a 1-form on the three-dimensional space with
coordinates {x}|1= a =3} that define the Yang-Wu solution for SU(2).

The first thing to be done is to substitute (32) into (24) in order to
determine the 1-forms B“[k]. As a prelude to this, we first obtain the
evaluation

a

p[k] = WALk]ex xt =%

k
T

dr, — dxj; (33)

since it will also be useful later. Thus, since equations (24) and (33) show
that B[ k]=dxy+ p“[k], we have the explicit evaluations

B[] =—’;—" dr, (34)

k

Now, only one of each of the triplets of 1-forms {B'[k], B’[k], B’[k]} is
independent, and hence the ten by ten matrix with entries B; has rank 4,

rank(B]) =4 (35)
We therefore have
B=det(B})=0 (36)
and each cofactor of the matrix ((B})) also vanishes. This shows that
dB/aB, =0 (37)

and hence the field equations (30) and (31) are satisfied throughout M,,.
In fact, B, its spatial derivatives, and the terms in the curly brackets in (31)
each vanish throughout M,,, so one could say that we have “doubly solved”
the field equations.

The next thing we establish is that the solution just obtained makes U,
torsion-free. In order to see this, we go back to the definition of the Cartan
torsion:

3'=DB'=dB'+ W°l, A B/, 0=i=<9 (38)
These decompose in the same way to yield 2°=0 and
3°[k]=dB°[k]+ W*[k]ea,* r B[ k] (39)
Use of equations (33) and (34) easily shows that
d d
W“[k]eAb“ABb[k]=p“[k]A%=—dszi (40)
k

4



Poincaré Gauge Theory 647

while (33) shows that dB“[k] has the same evaluation with the opposite
sign. Accordingly, (39) gives 2°[k] =0, and we have the desired result

=0, 0=i=9 (41)

It is easily seen that the curvature 2-forms 6°[k] do not vanish
throughout U,,, and hence this ten-dimensional space is torsion-free with
a nontrivial curvature structure. On the other hand, we have the alternative
evaluation (Edelen, 1985a)

3[k]=6"[kleap xi = 65 k]xi =0 (42)

Accordingly, the matrix of curvature 2-forms on each of the three three-
dimensional isotropic subspaces has the corresponding three-dimensional
radius vector in its kernel. Each three-dimensional isotropic subspace thus
has vanishing radial curvature, so that the support of the curvature matrix
is purely rotational. In fact, the rotational curvature is so great that all
directions from the origin in each three-dimensional isotropic space can be
identified relative to the metric geometry of the resulting space-time, as we
shall see.

4. DIMENSION SHAVING AND THE RESULTING
FOUR-DIMENSIONAL MINKOWSKI SPACE

The crucial information is provided by substituting the evaluations
given by (34) into the line element for Uy, in the form given by equation (25):

ds? = (dx")* — (dr)* —(dry)* - (dr,)? (43)

Since this is the line element of a four-dimensional Minkowski space with
local coordinates {x°, r,, r,, r3}, the space U, has been shaved down to a
four-dimensional Minkowski space as far as its metric geometry is concer-
ned. On the other hand, U,, has a nontrivial curvature structure, as we have
already seen, but the support of this curvature is internal as far as the metric
structure is concerned. Indeed, we may view (43) as the statement that only
the radial separation in each of the three isotropic three-dimensional spaces
of Uy, contributes to the resulting metric structure, while the angular
separations at the origins of each of the three isotropic three-dimensional
subspaces of U, are “rolled up” by the large, radially orthogonal matrices
of curvature 2-forms. The curvature structures of U, thus become curvature
structures of “pinched off” internal projective spaces which do not leave
footprints that can be detected by the resulting line element of the flat
Minkowski space given by (43). There are several alternative interpretations
of this result that readers can construct for themselves. Suffice it to say at
this juncture that we have exhibited a ten-dimensional theory for which an
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exact solution of the free field equations with nontrivial curvatures serves
to shave the metric structure down to that of a four-dimensional Minkowski
space.

5. UNIVERSALITY OF THE DIMENSION-SHAVING SOLUTION

The way we stumbled on the dimension-shaving solution was by using
the free field Lagrangian given by (9) and (10) and then noting that the
quantities inside the curly brackets in (31) are the SU(2) field equations.
What makes the solution work, however, is the fact that the matrix with
entries B; has rank 4. It thus turns out that surviving field equations (30)
and (31) are satisfied no matter what invariant scalar is used for U, because
we have B=0and 9B/ dBL=0.The dimension-shaving solution is therefore
universal with respect to the choice of the free field, Pss-invariant Lagrangian
that is independent of the components of the Cartan torsion. We therefore
have dimension having for any free field Lagrangian of the form

L=KV(6;)B (44)
where V is an arbitrary, Pss-invariant, scalar-valued function of its indicated
arguments. In particular, we can have

’ V=Ky+ K051l h¥+ KU+ - - (45)
where the K'’s are coupling constants. The first two terms in (45) give the
P55 analog of the Einstein-Hilbert Lagrangian, while U is the Pss analog
of the Lagrangian for electromagnetism that is so often used in gauge theory.

Universality of the dimension-shaving, free field solution is of particular
importance in the larger context in which matter field Lagrangians are
included. The analysis of such problems can proceed by allowing the free
field Lagrangian to have the general form given by (44), and then determin-
ing the shape of the function V in order to model specific structures. Once
V has been determined in this way, soliton-like solutions for the matter
fields should lead to asymptotically free gauge fields, and these in turn will
contain remnants of the universal dimension-shaving solution provided the
S0(3) X SO(3) x SO(3) symmetry is not broken. There is therefore a reason-
able prospect of obtaining ten-dimensional descriptions of matter that
induce an asymptotic four-dimensional metric structure.
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